View Javadoc
1   package org.djutils.polynomialroots;
2   
3   import org.djutils.complex.Complex;
4   import org.djutils.complex.ComplexMath;
5   
6   /**
7    * PolynomialRoots2 implements functions to find all roots of linear, quadratic, cubic and quartic polynomials, as well as
8    * higher order polynomials without restrictions on the order. <br>
9    * <br>
10   * Copyright (c) 2020-2020 Delft University of Technology, Jaffalaan 5, 2628 BX Delft, the Netherlands. All rights reserved. See
11   * for project information <a href="https://djutils.org" target="_blank"> https://djutils.org</a>. The DJUTILS project is
12   * distributed under a three-clause BSD-style license, which can be found at
13   * <a href="https://djutils.org/docs/license.html" target="_blank"> https://djutils.org/docs/license.html</a>. <br>
14   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
15   * @author <a href="https://www.tudelft.nl/pknoppers">Peter Knoppers</a>
16   */
17  public final class PolynomialRoots2
18  {
19      /**
20       * Do not instantiate.
21       */
22      private PolynomialRoots2()
23      {
24          // Do not instantiate
25      }
26  
27      /**
28       * Emulate the F77 sign function.
29       * @param a double; the value to optionally sign invert
30       * @param b double; the sign of which determines what to do
31       * @return double; if b &gt;= 0 then a; else -a
32       */
33      private static double sign(final double a, final double b)
34      {
35          return b >= 0 ? a : -a;
36      }
37  
38      /**
39       * LINEAR POLYNOMIAL ROOT SOLVER.
40       * <p>
41       * Calculates the root of the linear polynomial:<br>
42       * q1 * x + q0<br>
43       * @param q1 double; coefficient of the x term
44       * @param q0 double; independent coefficient
45       * @return Complex[]; the roots of the equation
46       */
47      public static Complex[] linearRoots(final double q1, final double q0)
48      {
49          if (q1 == 0)
50          {
51              return new Complex[] {}; // No roots; return empty array
52          }
53          return linearRoots(q0 / q1);
54      }
55  
56      /**
57       * LINEAR POLYNOMIAL ROOT SOLVER.
58       * <p>
59       * Calculates the root of the linear polynomial:<br>
60       * x + q0<br>
61       * @param q0 double; independent coefficient
62       * @return Complex[]; the roots of the equation
63       */
64      public static Complex[] linearRoots(final double q0)
65      {
66          return new Complexx.html#Complex">Complex[] {new Complex(-q0, 0)};
67      }
68  
69      /**
70       * QUADRATIC POLYNOMIAL ROOT SOLVER
71       * <p>
72       * Calculates all real + complex roots of the quadratic polynomial:<br>
73       * q2 * x^2 + q1 * x + q0<br>
74       * The code checks internally if rescaling of the coefficients is needed to avoid overflow.
75       * <p>
76       * The order of the roots is as follows:<br>
77       * 1) For real roots, the order is according to their algebraic value on the number scale (largest positive first, largest
78       * negative last).<br>
79       * 2) Since there can be only one complex conjugate pair root, no order is necessary.<br>
80       * q1 : coefficient of x term q0 : independent coefficient
81       * @param q2 double; coefficient of the quadratic term
82       * @param q1 double; coefficient of the x term
83       * @param q0 double; independent coefficient
84       * @return Complex[]; the roots of the equation
85       */
86      public static Complex[] quadraticRoots(final double q2, final double q1, final double q0)
87      {
88          if (q2 == 0)
89          {
90              return linearRoots(q1, q0);
91          }
92          return quadraticRoots(q1 / q2, q0 / q2);
93      }
94  
95      /**
96       * QUADRATIC POLYNOMIAL ROOT SOLVER
97       * <p>
98       * Calculates all real + complex roots of the quadratic polynomial:<br>
99       * x^2 + q1 * x + q0<br>
100      * The code checks internally if rescaling of the coefficients is needed to avoid overflow.
101      * <p>
102      * The order of the roots is as follows:<br>
103      * 1) For real roots, the order is according to their algebraic value on the number scale (largest positive first, largest
104      * negative last).<br>
105      * 2) Since there can be only one complex conjugate pair root, no order is necessary.<br>
106      * q1 : coefficient of x term q0 : independent coefficient
107      * @param q1 double; coefficient of the x term
108      * @param q0 double; independent coefficient
109      * @return Complex[]; the roots of the equation
110      */
111     public static Complex[] quadraticRoots(final double q1, final double q0)
112     {
113         boolean rescale;
114 
115         double a0, a1;
116         double k = 0, x, y, z;
117 
118         // Handle special cases.
119         if (q0 == 0.0 && q1 == 0.0)
120         {
121             // Two real roots at 0,0
122             return new Complex[] {Complex.ZERO, Complex.ZERO};
123         }
124         else if (q0 == 0.0)
125         {
126             // Two real roots; one of these is 0,0
127             // x^2 + q1 * x == x * (x + q1)
128             Complexlex">Complex nonZeroRoot = new Complex(-q1);
129             return new Complex[] {q1 > 0 ? Complex.ZERO : nonZeroRoot, q1 <= 0 ? nonZeroRoot : Complex.ZERO};
130         }
131         else if (q1 == 0.0)
132         {
133             x = Math.sqrt(Math.abs(q0));
134 
135             if (q0 < 0.0)
136             {
137                 // Two real roots, symmetrically around 0
138                 return new Complexml#Complex">Complexx.html#Complex">Complex[] {new Complexml#Complex">Complex(x, 0), new Complex(-x, 0)};
139             }
140             else
141             {
142                 // Two complex roots, symmetrically around 0
143                 return new Complexml#Complex">Complexx.html#Complex">Complex[] {new Complexml#Complex">Complex(0, x), new Complex(0, -x)};
144             }
145         }
146         else
147         {
148             // The general case. Do rescaling, if either squaring of q1/2 or evaluation of
149             // (q1/2)^2 - q0 will lead to overflow. This is better than to have the solver
150             // crashed. Note, that rescaling might lead to loss of accuracy, so we only
151             // invoke it when absolutely necessary.
152             final double sqrtLPN = Math.sqrt(Double.MAX_VALUE); // Square root of the Largest Positive Number
153             rescale = (q1 > sqrtLPN + sqrtLPN); // this detects overflow of (q1/2)^2
154 
155             if (!rescale)
156             {
157                 x = q1 * 0.5; // we are sure here that x*x will not overflow
158                 rescale = (q0 < x * x - Double.MAX_VALUE); // this detects overflow of (q1/2)^2 - q0
159             }
160 
161             if (rescale)
162             {
163                 x = Math.abs(q1);
164                 y = Math.sqrt(Math.abs(q0));
165 
166                 if (x > y)
167                 {
168                     k = x;
169                     z = 1.0 / x;
170                     a1 = sign(1.0, q1);
171                     a0 = (q0 * z) * z;
172                 }
173                 else
174                 {
175                     k = y;
176                     a1 = q1 / y;
177                     a0 = sign(1.0, q0);
178                 }
179             }
180             else
181             {
182                 a1 = q1;
183                 a0 = q0;
184             }
185             // Determine the roots of the quadratic. Note, that either a1 or a0 might
186             // have become equal to zero due to underflow. But both cannot be zero.
187             x = a1 * 0.5;
188             y = x * x - a0;
189 
190             if (y >= 0.0)
191             {
192                 // Two real roots
193                 y = Math.sqrt(y);
194 
195                 if (x > 0.0)
196                 {
197                     y = -x - y;
198                 }
199                 else
200                 {
201                     y = -x + y;
202                 }
203 
204                 if (rescale)
205                 {
206                     y = y * k; // very important to convert to original
207                     z = q0 / y; // root first, otherwise complete loss of
208                 }
209                 else // root due to possible a0 = 0 underflow
210                 {
211                     z = a0 / y;
212                 }
213                 return new Complexomplexx.html#Complex">Complex[] {new Complexomplex(Math.max(y, z), 0), new Complex(Math.min(y, z), 0)};
214             }
215             else
216             {
217                 // Two complex roots (zero real roots)
218                 y = Math.sqrt(-y);
219 
220                 if (rescale)
221                 {
222                     x *= k;
223                     y *= k;
224                 }
225                 return new Complexl#Complex">Complexx.html#Complex">Complex[] {new Complexl#Complex">Complex(-x, y), new Complex(-x, -y)};
226             }
227         }
228     }
229 
230     /**
231      * CUBIC POLYNOMIAL ROOT SOLVER.
232      * <p>
233      * Calculates all (real and complex) roots of the cubic polynomial:<br>
234      * a * x^3 + b * x^2 + c * x + d<br>
235      * The roots are found using the Newton-Raphson algorithm for the first (real) root, and then deflate the equation to a
236      * quadratic equation to find the other two roots.
237      * <p>
238      * The order of the roots is as follows: 1) For real roots, the order is according to their algebraic value on the number
239      * scale (largest positive first, largest negative last). 2) Since there can be only one complex conjugate pair root, no
240      * order is necessary. 3) All real roots precede the complex ones.
241      * @param a3 double; coefficient of the cubic term
242      * @param a2 double; coefficient of the quadratic term
243      * @param a1 double; coefficient of the linear term
244      * @param a0 double; coefficient of the independent term
245      * @return Complex[]; array of Complex with all the roots; there can be one, two or three roots.
246      */
247     public static Complex[] cubicRootsNewtonFactor(final double a3, final double a2, final double a1, final double a0)
248     {
249         // corner case: a == 0 --> quadratic equation
250         if (a3 == 0.0)
251         {
252             return quadraticRoots(a2, a1, a0);
253         }
254 
255         // corner case: d == 0 --> solve x * (ax^2 + bx + c) = 0
256         if (a0 == 0.0)
257         {
258             Complex[] result = quadraticRoots(a3, a2, a1);
259             if (result.length == 0)
260             {
261                 return new Complex[] {Complex.ZERO, Complex.ZERO, Complex.ZERO};
262             }
263             else if (result.length == 1)
264             {
265                 return new Complex[] {Complex.ZERO, Complex.ZERO, result[0]};
266             }
267             else
268             {
269                 return new Complex[] {Complex.ZERO, result[0], result[1]};
270             }
271         }
272 
273         double argmax = maxAbs(a3, a2, a1, a0);
274         double d = a0 / argmax;
275         double c = a1 / argmax;
276         double b = a2 / argmax;
277         double a = a3 / argmax;
278 
279         // find the first real root
280         double[] args = new double[] {d, c, b, a};
281         double root1 = rootNewtonRaphson(args, 0.0);
282 
283         // check and apply bisection if this did not work
284         if (Double.isNaN(root1) || f(args, root1) > 1E-9)
285         {
286             double min = -64.0;
287             double max = 64.0;
288             int s1, s2;
289             do
290             {
291                 min *= 2.0;
292                 max *= 2.0;
293                 if (max > 1E64)
294                 {
295                     throw new RuntimeException(
296                             String.format("cannot find first root for %fx^3 + %fx^2 + %fx + %f = 0", a, b, c, d));
297                 }
298                 s1 = (int) Math.signum(f(args, min));
299                 s2 = (int) Math.signum(f(args, max));
300             }
301             while (s1 != 0 && s2 != 0 && s1 == s2);
302             root1 = rootBisection(args, min, max, 0.0);
303 //            if (Double.isNaN(root1))
304 //            {
305 //                throw new RuntimeException(
306 //                        String.format("cannot find first root for %fx^3 + %fx^2 + %fx + %f = 0", a, b, c, d));
307 //            }
308 //            if (Math.abs(f(args, root1)) > 1E-6)
309 //            {
310 //                throw new RuntimeException(String.format("f(first root) != 0 for [%fx^3 + %fx^2 + %fx + %f = 0, but %f]", a, b,
311 //                        c, d, f(args, root1)));
312 //            }
313         }
314 
315         /*-
316          * Use Factor theory to factor out root 1 (r):
317          * if the equation is ax^3 + bx^2 + cx + d, and there is a root r, the equation equals:
318          * (x-r) (ax^2 + (b+ra)x + (c+r(b+ra)) + (ar^3+br^2+cr+d)/(x-r) where the last term becomes zero
319          * We can then solve find the other two roots by solving ax^2 + (b+ra)x + (c+r(b+ra)) = 0
320          */
321 
322         Complex[] rootsQuadaratic = quadraticRoots(a, b + root1 * a, c + root1 * (b + root1 * a));
323 //        if (Math.abs(f(args, rootsQuadaratic[0]).norm()) > 1E-6)
324 //        {
325 //            throw new RuntimeException(String.format("f(second root) != 0 for [%fx^3 + %fx^2 + %fx + %f = 0], but %f", a, b, c,
326 //                    d, f(args, root1)));
327 //        }
328 //        if (Math.abs(f(args, rootsQuadaratic[1]).norm()) > 1E-6)
329 //        {
330 //            throw new RuntimeException(String.format("f(second root) != 0 for [%fx^3 + %fx^2 + %fx + %f = 0], but %f", a, b, c,
331 //                    d, f(args, root1)));
332 //        }
333 
334         return new Complexx.html#Complex">Complex[] {new Complex(root1), rootsQuadaratic[0], rootsQuadaratic[1]};
335     }
336 
337     /**
338      * CUBIC POLYNOMIAL ROOT SOLVER.
339      * <p>
340      * Calculates all (real and complex) roots of the cubic polynomial:<br>
341      * a * x^3 + b * x^2 + c * x + d<br>
342      * The roots are found using Cardano's algorithm.
343      * <p>
344      * The order of the roots is as follows: 1) For real roots, the order is according to their algebraic value on the number
345      * scale (largest positive first, largest negative last). 2) Since there can be only one complex conjugate pair root, no
346      * order is necessary. 3) All real roots precede the complex ones.
347      * @param a double; coefficient of the cubic term
348      * @param b double; coefficient of the quadratic term
349      * @param c double; coefficient of the linear term
350      * @param d double; coefficient of the independent term
351      * @return Complex[]; array of Complex with all the roots; there can be one, two or three roots.
352      */
353     @SuppressWarnings("checkstyle:localvariablename")
354     public static Complex[] cubicRootsCardano(final double a, final double b, final double c, final double d)
355     {
356         // corner case: a == 0 --> quadratic equation
357         if (a == 0.0)
358         {
359             return quadraticRoots(b, c, d);
360         }
361 
362         // corner case: d == 0 --> solve x * (ax^2 + bx + c) = 0
363         if (d == 0.0)
364         {
365             Complex[] result = quadraticRoots(a, b, c);
366             if (result.length == 0)
367             {
368                 return new Complex[] {Complex.ZERO, Complex.ZERO, Complex.ZERO};
369             }
370             else if (result.length == 1)
371             {
372                 return new Complex[] {Complex.ZERO, Complex.ZERO, result[0]};
373             }
374             else
375             {
376                 return new Complex[] {Complex.ZERO, result[0], result[1]};
377             }
378         }
379 
380         // other cases: use Cardano's formula
381         double D0 = b * b - 3.0 * a * c;
382         double D1 = 2.0 * b * b * b - 9.0 * a * b * c + 27.0 * a * a * d;
383         if (D0 == 0 && D1 == 0)
384         {
385             // one real solution
386             Complexml#Complex">Complex root = new Complex(rootNewtonRaphson(new double[] {d, c, b, a}, 0.0));
387             return new Complex[] {root, root, root};
388         }
389         Complexmplex r = ComplexMath.sqrt(new Complex(D1 * D1 - 4.0 * D0 * D0 * D0));
390         Complex s = r.plus(D1).times(0.5);
391         if (s.re == 0.0 && s.im == 0.0)
392         {
393             s = r.times(-1.0).plus(D1).times(0.5);
394         }
395         Complex C = ComplexMath.cbrt(s);
396         Complex x1 = C.plus(b).plus((C.reciprocal().times(D0))).times(-1.0 / (3.0 * a));
397         Complex x2 = C.rotate(Math.toRadians(120.0)).plus(b).plus((C.rotate(Math.toRadians(120.0)).reciprocal().times(D0)))
398                 .times(-1.0 / (3.0 * a));
399         Complex x3 = C.rotate(Math.toRadians(-120.0)).plus(b).plus((C.rotate(Math.toRadians(-120.0)).reciprocal().times(D0)))
400                 .times(-1.0 / (3.0 * a));
401         return new Complex[] {x1, x2, x3};
402     }
403 
404     /**
405      * CUBIC POLYNOMIAL ROOT SOLVER.
406      * <p>
407      * Calculates all (real and complex) roots of the cubic polynomial:<br>
408      * a3 * x^3 + a2 * x^2 + a1 * x + a0<br>
409      * The roots are found using Durand-Kerner's algorithm.
410      * @param a3 double; coefficient of the cubic term
411      * @param a2 double; coefficient of the quadratic term
412      * @param a1 double; coefficient of the linear term
413      * @param a0 double; coefficient of the independent term
414      * @return Complex[]; array of Complex with all the roots; there can be one, two or three roots.
415      */
416     public static Complex[] cubicRootsDurandKerner(final double a3, final double a2, final double a1, final double a0)
417     {
418         // corner case: a3 == 0 --> quadratic equation
419         if (a3 == 0.0)
420         {
421             return quadraticRoots(a2, a1, a0);
422         }
423 
424         // other cases: use Durand-Kerner's algorithm
425         return rootsDurandKerner(new ComplexComplex">ComplexComplex">Complexx.html#Complex">Complex[] {new ComplexComplex">ComplexComplex">Complex(a0 / a3), new ComplexComplex">Complex(a1 / a3), new Complex(a2 / a3), Complex.ONE});
426     }
427 
428     /**
429      * CUBIC POLYNOMIAL ROOT SOLVER.
430      * <p>
431      * Calculates all (real and complex) roots of the cubic polynomial:<br>
432      * a3 * x^3 + a2 * x^2 + a1 * x + a0<br>
433      * The roots are found using Aberth-Ehrlich's algorithm.
434      * @param a3 double; coefficient of the cubic term
435      * @param a2 double; coefficient of the quadratic term
436      * @param a1 double; coefficient of the linear term
437      * @param a0 double; coefficient of the independent term
438      * @return Complex[]; array of Complex with all the roots; there can be one, two or three roots.
439      */
440     public static Complex[] cubicRootsAberthEhrlich(final double a3, final double a2, final double a1, final double a0)
441     {
442         // corner case: a3 == 0 --> quadratic equation
443         if (a3 == 0.0)
444         {
445             return quadraticRoots(a2, a1, a0);
446         }
447 
448         // other cases: use Durand-Kerner's algorithm
449         return rootsAberthEhrlich(
450                 new ComplexComplex">ComplexComplex">Complexx.html#Complex">Complex[] {new ComplexComplex">ComplexComplex">Complex(a0 / a3), new ComplexComplex">Complex(a1 / a3), new Complex(a2 / a3), Complex.ONE});
451     }
452 
453     /**
454      * QUADRATIC POLYNOMIAL ROOT SOLVER.
455      * <p>
456      * Calculates all (real and complex) roots of the cubic polynomial:<br>
457      * a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0<br>
458      * The roots are found using Durand-Kerner's algorithm.
459      * @param a4 double; coefficient of the quartic term
460      * @param a3 double; coefficient of the cubic term
461      * @param a2 double; coefficient of the quadratic term
462      * @param a1 double; coefficient of the linear term
463      * @param a0 double; coefficient of the independent term
464      * @return Complex[]; array of Complex with all the roots; always 4 roots are returned; there can be double roots
465      */
466     public static Complex[] quarticRootsDurandKerner(final double a4, final double a3, final double a2, final double a1,
467             final double a0)
468     {
469         // corner case: a4 == 0 --> cubic equation
470         if (a4 == 0.0)
471         {
472             return cubicRootsDurandKerner(a3, a2, a1, a0);
473         }
474 
475         return rootsDurandKerner(new ComplexComplex">ComplexComplex">Complexx.html#Complex">Complex[] {new ComplexComplex">ComplexComplex">Complex(a0 / a4), new ComplexComplex">Complex(a1 / a4), new Complex(a2 / a4),
476                 new Complex(a3 / a4), Complex.ONE});
477     }
478 
479     /**
480      * QUADRATIC POLYNOMIAL ROOT SOLVER.
481      * <p>
482      * Calculates all (real and complex) roots of the cubic polynomial:<br>
483      * a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0<br>
484      * The roots are found using Aberth-Ehrlich's algorithm.
485      * @param a4 double; coefficient of the quartic term
486      * @param a3 double; coefficient of the cubic term
487      * @param a2 double; coefficient of the quadratic term
488      * @param a1 double; coefficient of the linear term
489      * @param a0 double; coefficient of the independent term
490      * @return Complex[]; array of Complex with all the roots; always 4 roots are returned; there can be double roots
491      */
492     public static Complex[] quarticRootsAberthEhrlich(final double a4, final double a3, final double a2, final double a1,
493             final double a0)
494     {
495         // corner case: a4 == 0 --> cubic equation
496         if (a4 == 0.0)
497         {
498             return cubicRootsAberthEhrlich(a3, a2, a1, a0);
499         }
500 
501         return rootsAberthEhrlich(new ComplexComplex">ComplexComplex">Complexx.html#Complex">Complex[] {new ComplexComplex">ComplexComplex">Complex(a0 / a4), new ComplexComplex">Complex(a1 / a4), new Complex(a2 / a4),
502                 new Complex(a3 / a4), Complex.ONE});
503     }
504 
505     /** the number of steps in solving the equation with the Durand-Kerner method. */
506     private static final int MAX_STEPS_DURAND_KERNER = 100;
507 
508     /**
509      * Polynomial root finder using the Durand-Kerner method, with complex coefficients for the polynomial equation. Own
510      * implementation. See <a href="https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method">
511      * https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method</a> for brief information.
512      * @param a Complex[]; the complex factors of the polynomial, where the index i indicate the factor for x^i, so the
513      *            polynomial is<br>
514      *            a[n]x^n + a[n-1]x^(n-1) + ... + a[2]a^2 + a[1]x + a[0]
515      * @return Complex[] all roots of the equation, where real roots are coded with Im = 0
516      */
517     public static Complexplex[] rootsDurandKerner(final Complex[] a)
518     {
519         int n = a.length - 1;
520         double radius = 1 + maxAbs(a);
521 
522         // initialize the initial values, not as a real number and not as a root of unity
523         Complextml#Complex">Complex[] p = new Complex[n];
524         p[0] = new Complex(Math.sqrt(radius), Math.cbrt(radius));
525         double rot = 350.123 / n;
526         for (int i = 1; i < n; i++)
527         {
528             p[i] = p[0].rotate(rot * i);
529         }
530 
531         double maxError = 1.0;
532         int count = 0;
533         while (maxError > 0 && count < MAX_STEPS_DURAND_KERNER)
534         {
535             maxError = 0.0;
536             count++;
537             for (int i = 0; i < n; i++)
538             {
539                 Complex factors = Complex.ONE;
540                 for (int j = 0; j < n; j++)
541                 {
542                     if (i != j)
543                     {
544                         factors = factors.times(p[i].minus(p[j]));
545                     }
546                 }
547                 Complex newValue = p[i].minus(f(a, p[i]).divideBy(factors));
548                 if (!(newValue.equals(p[i])))
549                 {
550                     double error = newValue.minus(p[i]).norm();
551                     if (error > maxError)
552                     {
553                         maxError = error;
554                     }
555                     p[i] = newValue;
556                 }
557             }
558         }
559 
560         // correct for 1 ulp above or below zero; make that value zero instead
561         for (int i = 0; i < n; i++)
562         {
563             if (Math.abs(p[i].im) == Double.MIN_VALUE)
564             {
565                 p[i] = new Complex(p[i].re, 0.0);
566             }
567             if (Math.abs(p[i].re) == Double.MIN_VALUE)
568             {
569                 p[i] = new Complex(0.0, p[i].im);
570             }
571         }
572 
573         return p;
574     }
575 
576     /** the number of steps in solving the equation with the Durand-Kerner method. */
577     private static final int MAX_STEPS_ABERTH_EHRLICH = 100;
578 
579     /**
580      * Polynomial root finder using the Aberth-Ehrlich method or Aberth method, with complex coefficients for the polynomial
581      * equation. Own implementation. See <a href="https://en.wikipedia.org/wiki/Aberth_method">
582      * https://en.wikipedia.org/wiki/Aberth_method</a> for brief information.
583      * @param a Complex[]; the complex factors of the polynomial, where the index i indicate the factor for x^i, so the
584      *            polynomial is<br>
585      *            a[n]x^n + a[n-1]x^(n-1) + ... + a[2]a^2 + a[1]x + a[0]
586      * @return Complex[] all roots of the equation, where real roots are coded with Im = 0
587      */
588     public static Complexlex[] rootsAberthEhrlich(final Complex[] a)
589     {
590         int n = a.length - 1;
591         double radius = 1 + maxAbs(a);
592 
593         // initialize the initial values, not as a real number and not as a root of unity
594         Complextml#Complex">Complex[] p = new Complex[n];
595         p[0] = new Complex(Math.sqrt(radius), Math.cbrt(radius));
596         double rot = 350.123 / n;
597         for (int i = 1; i < n; i++)
598         {
599             p[i] = p[0].rotate(rot * i);
600         }
601 
602         double maxError = 1.0;
603         int count = 0;
604         while (maxError > 0 && count < MAX_STEPS_ABERTH_EHRLICH)
605         {
606             maxError = 0.0;
607             count++;
608             for (int i = 0; i < n; i++)
609             {
610                 Complex sum = Complex.ZERO;
611                 for (int j = 0; j < n; j++)
612                 {
613                     if (i != j)
614                     {
615                         sum = sum.plus(Complex.ONE.divideBy(p[i].minus(p[j])));
616                     }
617                 }
618                 Complex pDivPDer = f(a, p[i]).divideBy(fDerivative(a, p[i]));
619                 Complex w = pDivPDer.divideBy(Complex.ONE.minus(pDivPDer.times(sum)));
620                 double error = w.norm();
621                 if (error > maxError)
622                 {
623                     maxError = error;
624                 }
625                 p[i] = p[i].minus(w);
626             }
627         }
628 
629         // correct for 1 ulp above or below zero; make that value zero instead
630         for (int i = 0; i < n; i++)
631         {
632             if (Math.abs(p[i].im) == Double.MIN_VALUE)
633             {
634                 p[i] = new Complex(p[i].re, 0.0);
635             }
636             if (Math.abs(p[i].re) == Double.MIN_VALUE)
637             {
638                 p[i] = new Complex(0.0, p[i].im);
639             }
640         }
641 
642         return p;
643     }
644 
645     /** the number of steps in approximating a real root with the Newton-Raphson method. */
646     private static final int MAX_STEPS_NEWTON = 100;
647 
648     /**
649      * Polynomial root finder using the Newton-Raphson method. See <a href="https://en.wikipedia.org/wiki/Newton%27s_method">
650      * https://en.wikipedia.org/wiki/Newton%27s_method</a> for brief information about the Newton-Raphson or Newton method for
651      * root finding.
652      * @param a double[]; the factors of the polynomial, where the index i indicate the factor for x^i, so the polynomial is<br>
653      *            a[n]x^n + a[n-1]x^(n-1) + ... + a[2]a^2 + a[1]x + a[0]
654      * @param allowedError double; the allowed absolute error in the result
655      * @return double the root of the equation that has been found on the basis of the start value, or NaN if not found within
656      *         the allowed error bounds and the allowed number of steps.
657      */
658     public static double rootNewtonRaphson(final double[] a, final double allowedError)
659     {
660         double x = 0.1232232323234; // take a a start point that has an almost zero chance of having f'(x) = 0.
661         double newValue = Double.NaN; // for testing convergence
662         double fx = -1;
663         for (int j = 0; j < MAX_STEPS_NEWTON; j++)
664         {
665             fx = f(a, x);
666             newValue = x - fx / fDerivative(a, x);
667             if (x == newValue || Math.abs(fx) <= allowedError)
668             {
669                 return x;
670             }
671             x = newValue;
672         }
673         return Math.abs(fx) <= allowedError ? x : Double.NaN;
674     }
675 
676     /** the number of steps in approximating a real root with the bisection method. */
677     private static final int MAX_STEPS_BISECTION = 100;
678 
679     /**
680      * Polynomial root finder using the bisection method combined with bisection to avoid cycles and the algorithm going out of
681      * bounds. Implementation based on Numerical Recipes in C, section 9.4, pp 365-366. See
682      * <a href="https://en.wikipedia.org/wiki/Newton%27s_method"> https://en.wikipedia.org/wiki/Newton%27s_method</a> for brief
683      * information about the Newton-Raphson or Newton method for root finding.
684      * @param a double[]; the factors of the polynomial, where the index i indicate the factor for x^i, so the polynomial is<br>
685      *            a[n]x^n + a[n-1]x^(n-1) + ... + a[2]a^2 + a[1]x + a[0]
686      * @param startMin double; the lowest initial search value
687      * @param startMax double; the highest initial search value
688      * @param allowedError double; the allowed absolute error in the result
689      * @return double the root of the equation that has been found on the basis of the start values, or NaN if not found within
690      *         the allowed error bounds and the allowed number of steps.
691      */
692     public static double rootBisection(final double[] a, final double startMin, final double startMax,
693             final double allowedError)
694     {
695         int n = 0;
696         double xPrev = startMin;
697         double min = startMin;
698         double max = startMax;
699         double fmin = f(a, min);
700         while (n <= MAX_STEPS_BISECTION)
701         {
702             double x = (min + max) / 2.0;
703             double fx = f(a, x);
704             if (x == xPrev || Math.abs(fx) < allowedError)
705             {
706                 return x;
707             }
708             if (Math.signum(fx) == Math.signum(fmin))
709             {
710                 min = x;
711                 fmin = fx;
712             }
713             else
714             {
715                 max = x;
716             }
717             xPrev = x;
718             n++;
719         }
720         return Double.NaN;
721     }
722 
723     /**
724      * Return the max of the norm of the complex coefficients in an array.
725      * @param array Complex[] the array with complex numbers
726      * @return double; the highest value of the norm of the complex numbers in the array
727      */
728     private static double maxAbs(final Complex[] array)
729     {
730         double m = Double.NEGATIVE_INFINITY;
731         for (Complex c : array)
732         {
733             if (c.norm() > m)
734             {
735                 m = c.norm();
736             }
737         }
738         return m;
739     }
740 
741     /**
742      * Return the max of the absolute values of the coefficients in an array.
743      * @param values double[] the array with numbers
744      * @return double; the highest absolute value of the norm of the complex numbers in the array
745      */
746     private static double maxAbs(final double... values)
747     {
748         double m = Double.NEGATIVE_INFINITY;
749         for (double d : values)
750         {
751             if (Math.abs(d) > m)
752             {
753                 m = Math.abs(d);
754             }
755         }
756         return m;
757     }
758 
759     /**
760      * Return the complex value of f(c) where f(x) = a[n]x^n + a[n-1]x^(n-1) + ... + a[2]a^2 + a[1]x + a[0].
761      * @param a Complex[] the complex factors of the equation
762      * @param c Complex; the value for which to calculate f(c)
763      * @return Complex; f(c)
764      */
765     private static Complexml#Complex">Complex.html#Complex">Complex f(final Complexml#Complex">Complex[] a, final Complex c)
766     {
767         Complex cPow = Complex.ONE;
768         Complex result = Complex.ZERO;
769         for (int i = 0; i < a.length; i++)
770         {
771             result = result.plus(cPow.times(a[i]));
772             cPow = cPow.times(c);
773         }
774         return result;
775     }
776 
777     /**
778      * Return the real value of f(x) where f(x) = a[n]x^n + a[n-1]x^(n-1) + ... + a[2]a^2 + a[1]x + a[0].
779      * @param a double[] the factors of the equation
780      * @param x double; the value for which to calculate f(x)
781      * @return double; f(x)
782      */
783     private static double f(final double[] a, final double x)
784     {
785         double xPow = 1.0;
786         double result = 0.0;
787         for (int i = 0; i < a.length; i++)
788         {
789             result += xPow * a[i];
790             xPow = xPow * x;
791         }
792         return result;
793     }
794 
795     /**
796      * Return the complex value of f(c) where f(x) = a[n]x^n + a[n-1]x^(n-1) + ... + a[2]a^2 + a[1]x + a[0].
797      * @param a double[] the complex factors of the equation
798      * @param c Complex; the value for which to calculate f(c)
799      * @return Complex; f(c)
800      */
801     private static Complex f(final Complexeyword">double[] a, final Complex c)
802     {
803         Complex cPow = Complex.ONE;
804         Complex result = Complex.ZERO;
805         for (int i = 0; i < a.length; i++)
806         {
807             result = result.plus(cPow.times(a[i]));
808             cPow = cPow.times(c);
809         }
810         return result;
811     }
812 
813     /**
814      * Return the real value of f'(x) where f(x) = a[n]x^n + a[n-1]x^(n-1) + ... + a[2]a^2 + a[1]x + a[0].<br>
815      * The derivative function f'(x) = n.a[n]x^(n-1) + (n-1).a[n-1]x^(n-2) + ... + 2.a[2]x^1 + 1.a[1]
816      * @param a double[] the factors of the equation
817      * @param x double; the value for which to calculate f'(x)
818      * @return double; f'(x), the value of the derivative function at point x
819      */
820     private static double fDerivative(final double[] a, final double x)
821     {
822         double xPow = 1.0;
823         double result = 0.0;
824         for (int i = 1; i < a.length; i++)
825         {
826             result += xPow * i * a[i];
827             xPow = xPow * x;
828         }
829         return result;
830     }
831 
832     /**
833      * Return the complex value of f'(c) where f(c) = a[n]c^n + a[n-1]c^(n-1) + ... + a[2]a^2 + a[1]c + a[0].<br>
834      * The derivative function f'(c) = n.a[n]c^(n-1) + (n-1).a[n-1]c^(n-2) + ... + 2.a[2]c^1 + 1.a[1]
835      * @param a double[] the factors of the equation
836      * @param c double; the value for which to calculate f'(c)
837      * @return Complex; f'(c), the value of the derivative function at point c
838      */
839     private static Complexml#Complex">Complexlex">Complex fDerivative(final Complexml#Complex">Complex[] a, final Complex c)
840     {
841         Complex cPow = Complex.ONE;
842         Complex result = Complex.ZERO;
843         for (int i = 1; i < a.length; i++)
844         {
845             result = result.plus(cPow.times(a[i]).times(i));
846             cPow = cPow.times(c);
847         }
848         return result;
849     }
850 
851     /**
852      * @param args String[] not used
853      */
854     public static void main(final String[] args)
855     {
856         double a = 0.001;
857         double b = 1000;
858         double c = 0;
859         double d = 1;
860         Complex[] roots = cubicRootsNewtonFactor(a, b, c, d);
861         for (Complex root : roots)
862         {
863             System.out.println("NewtonFactor    " + root + "   f(x) = " + f(new double[] {d, c, b, a}, root));
864         }
865         System.out.println();
866         roots = cubicRootsCardano(a, b, c, d);
867         for (Complex root : roots)
868         {
869             System.out.println("Cardano         " + root + "   f(x) = " + f(new double[] {d, c, b, a}, root));
870         }
871         System.out.println();
872         roots = cubicRootsAberthEhrlich(a, b, c, d);
873         for (Complex root : roots)
874         {
875             System.out.println("Aberth-Ehrlich  " + root + "   f(x) = " + f(new double[] {d, c, b, a}, root));
876         }
877         System.out.println();
878         roots = cubicRootsDurandKerner(a, b, c, d);
879         for (Complex root : roots)
880         {
881             System.out.println("Durand-Kerner   " + root + "   f(x) = " + f(new double[] {d, c, b, a}, root));
882         }
883         System.out.println();
884         roots = PolynomialRoots.cubicRoots(a, b, c, d);
885         for (Complex root : roots)
886         {
887             System.out.println("F77             " + root + "   f(x) = " + f(new double[] {d, c, b, a}, root));
888         }
889     }
890 }