1 package org.djutils.draw; 2 3 import java.util.Arrays; 4 import java.util.Iterator; 5 6 import org.djutils.draw.bounds.Bounds2d; 7 import org.djutils.draw.point.Point2d; 8 9 /** 10 * Transform2d contains a MUTABLE transformation object that can transform points (x,y) based on e.g, rotation and translation. 11 * It uses an affine transform matrix that can be built up from different components (translation, rotation, scaling, 12 * reflection, shearing). 13 * <p> 14 * Copyright (c) 2020-2021 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br> 15 * BSD-style license. See <a href="https://djutils.org/docs/current/djutils/licenses.html">DJUTILS License</a>. 16 * </p> 17 * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a> 18 * @author <a href="https://www.tudelft.nl/pknoppers">Peter Knoppers</a> 19 */ 20 public class Transform2d implements Cloneable 21 { 22 /** The 3x3 transformation matrix, initialized as the Identity matrix. */ 23 private double[] mat = new double[] {1, 0, 0, 0, 1, 0, 0, 0, 1}; 24 25 /** 26 * Multiply a 3x3 matrix (stored as a 9-value array by row) with a 4-value vector. 27 * @param m double[]; the matrix 28 * @param v double[]; the vector 29 * @return double[3]; the result of m x v 30 */ 31 protected static double[] mulMatVec(final double[] m, final double[] v) 32 { 33 double[] result = new double[3]; 34 for (int i = 0; i < 3; i++) 35 { 36 result[i] = m[3 * i] * v[0] + m[3 * i + 1] * v[1] + m[3 * i + 2] * v[2]; 37 } 38 return result; 39 } 40 41 /** 42 * Multiply a 3x3 matrix (stored as a 9-value array by row) with a 3-value vector and a 1 for the 3rd value. 43 * @param m double[]; the matrix 44 * @param v double[]; the vector 45 * @return double[2]; the result of m x (v1, v2, 1), with the last value left out 46 */ 47 protected static double[] mulMatVec2(final double[] m, final double[] v) 48 { 49 double[] result = new double[2]; 50 for (int i = 0; i < 2; i++) 51 { 52 result[i] = m[3 * i] * v[0] + m[3 * i + 1] * v[1] + m[3 * i + 2]; 53 } 54 return result; 55 } 56 57 /** 58 * Multiply a 3x3 matrix (stored as a 9-value array by row) with another 3x3-matrix. 59 * @param m1 double[]; the first matrix 60 * @param m2 double[]; the second matrix 61 * @return double[9]; the result of m1 x m2 62 */ 63 protected static double[] mulMatMat(final double[] m1, final double[] m2) 64 { 65 double[] result = new double[9]; 66 for (int i = 0; i < 3; i++) 67 { 68 for (int j = 0; j < 3; j++) 69 { 70 result[3 * i + j] = m1[3 * i] * m2[j] + m1[3 * i + 1] * m2[j + 3] + +m1[3 * i + 2] * m2[j + 6]; 71 } 72 } 73 return result; 74 } 75 76 /** 77 * Get a safe copy of the affine transformation matrix. 78 * @return double[]; a safe copy of the affine transformation matrix 79 */ 80 public double[] getMat() 81 { 82 return this.mat.clone(); 83 } 84 85 /** 86 * Transform coordinates by a vector (tx, ty). 87 * @param tx double; the translation value for the x-coordinates 88 * @param ty double; the translation value for the y-coordinates 89 * @return Transform2d; the new transformation matrix after applying this transform 90 */ 91 public Transform2d translate(final double tx, final double ty) 92 { 93 if (tx == 0.0 && ty == 0.0) 94 { 95 return this; 96 } 97 this.mat = mulMatMat(this.mat, new double[] {1, 0, tx, 0, 1, ty, 0, 0, 1}); 98 return this; 99 } 100 101 /** 102 * Translate coordinates by a the x and y values contained in a Point2d. 103 * @param point Point2d; the point containing the x and y translation values 104 * @return Transform2d; the new transformation matrix after applying this transform 105 */ 106 public Transform2d translate(final Point2d point) 107 { 108 if (point.x == 0.0 && point.y == 0.0) 109 { 110 return this; 111 } 112 this.mat = mulMatMat(this.mat, new double[] {1, 0, point.x, 0, 1, point.y, 0, 0, 1}); 113 return this; 114 } 115 116 /** 117 * Scale all coordinates with a factor for x, and y. A scale factor of 1 leaves the coordinate unchanged. 118 * @param sx double; the scale factor for the x-coordinates 119 * @param sy double; the scale factor for the y-coordinates 120 * @return Transform2d; the new transformation matrix after applying this transform 121 */ 122 public Transform2d scale(final double sx, final double sy) 123 { 124 if (sx == 1.0 && sy == 1.0) 125 { 126 return this; 127 } 128 this.mat = mulMatMat(this.mat, new double[] {sx, 0, 0, 0, sy, 0, 0, 0, 1}); 129 return this; 130 } 131 132 /** 133 * The rotation around the origin with an angle in radians. 134 * @param angle double; the angle to rotate the coordinates with with around the origin 135 * @return Transform2d; the new transformation matrix after applying this transform 136 */ 137 public Transform2d rotation(final double angle) 138 { 139 if (angle == 0.0) 140 { 141 return this; 142 } 143 double c = Math.cos(angle); 144 double s = Math.sin(angle); 145 this.mat = mulMatMat(this.mat, new double[] {c, -s, 0, s, c, 0, 0, 0, 1}); 146 return this; 147 } 148 149 /** 150 * The 2d shear leaves the xy-coordinate plane for z=0 untouched. An x-coordinate with a value of 1 is translated by sx, and 151 * an x-coordinate with another value is translated by x*sx. Similarly, a y-coordinate with a value of 1 is translated by xy 152 * and a y-coordinate with another value is translated by y*sy. 153 * @param sx double; the shear factor in the x-direction 154 * @param sy double; the shear factor in the y-direction 155 * @return Transform2d; the new transformation matrix after applying this transform 156 */ 157 public Transform2d shear(final double sx, final double sy) 158 { 159 if (sx == 0.0 && sy == 0.0) 160 { 161 return this; 162 } 163 this.mat = mulMatMat(this.mat, new double[] {1, sx, 0, sy, 1, 0, 0, 0, 1}); 164 return this; 165 } 166 167 /** 168 * The reflection of the x-coordinate, by mirroring it in the yz-plane (the plane with x=0). 169 * @return Transform2d; the new transformation matrix after applying this transform 170 */ 171 public Transform2d reflectX() 172 { 173 this.mat = mulMatMat(this.mat, new double[] {-1, 0, 0, 0, 1, 0, 0, 0, 1}); 174 return this; 175 } 176 177 /** 178 * The reflection of the y-coordinate, by mirroring it in the xz-plane (the plane with y=0). 179 * @return Transform2d; the new transformation matrix after applying this transform 180 */ 181 public Transform2d reflectY() 182 { 183 this.mat = mulMatMat(this.mat, new double[] {1, 0, 0, 0, -1, 0, 0, 0, 1}); 184 return this; 185 } 186 187 /** 188 * Apply the stored transform on the xy-vector and return the transformed vector. For speed reasons, no checks on correct 189 * size of the vector is done. 190 * @param xy double[]; double[2] the provided vector 191 * @return double[2]; the transformed vector 192 */ 193 public double[] transform(final double[] xy) 194 { 195 return mulMatVec2(this.mat, xy); 196 } 197 198 /** 199 * Apply the stored transform on the provided point and return a point with the transformed coordinate. 200 * @param point Point2d; the point to be transformed 201 * @return Point2d; a point with the transformed coordinates 202 */ 203 public Point2d#Point2d">Point2d transform(final Point2d point) 204 { 205 return new Point2d(mulMatVec2(this.mat, new double[] {point.x, point.y})); 206 } 207 208 /** 209 * Apply the stored transform on the provided point and return a point with the transformed coordinate. 210 * @param pointIterator Iterator<Point2d>; generates the points to be transformed 211 * @return Iterator<Point2d>; an iterator that will generator all transformed points 212 */ 213 public Iterator<Point2d> transform(final Iterator<Point2d> pointIterator) 214 { 215 return new Iterator<Point2d>() 216 { 217 218 @Override 219 public boolean hasNext() 220 { 221 return pointIterator.hasNext(); 222 } 223 224 @Override 225 public Point2d next() 226 { 227 return transform(pointIterator.next()); 228 } 229 }; 230 } 231 232 /** 233 * Apply the stored transform on the provided Bounds2d and return a new Bounds2d with the bounds of the transformed 234 * coordinates. All 4 corner points have to be transformed, since we do not know which of the 4 points will result in the 235 * lowest and highest x and y coordinates. 236 * @param boundingRectangle Bounds2d; the bounds to be transformed 237 * @return Bounds2d; the new bounds based on the transformed coordinates 238 */ 239 public Bounds2dl#Bounds2d">Bounds2d transform(final Bounds2d boundingRectangle) 240 { 241 return new Bounds2d(transform(boundingRectangle.getPoints())); 242 } 243 244 /** {@inheritDoc} */ 245 @Override 246 public int hashCode() 247 { 248 final int prime = 31; 249 int result = 1; 250 result = prime * result + Arrays.hashCode(this.mat); 251 return result; 252 } 253 254 /** {@inheritDoc} */ 255 @Override 256 @SuppressWarnings("checkstyle:needbraces") 257 public boolean equals(final Object obj) 258 { 259 if (this == obj) 260 return true; 261 if (obj == null) 262 return false; 263 if (getClass() != obj.getClass()) 264 return false; 265 Transform2d./../org/djutils/draw/Transform2d.html#Transform2d">Transform2d other = (Transform2d) obj; 266 if (!Arrays.equals(this.mat, other.mat)) 267 return false; 268 return true; 269 } 270 271 /** {@inheritDoc} */ 272 @Override 273 public String toString() 274 { 275 return "Transform2d [mat=" + Arrays.toString(this.mat) + "]"; 276 } 277 278 }