Arc2d.java
package org.djutils.draw.curve;
import org.djutils.draw.function.ContinuousPiecewiseLinearFunction;
import org.djutils.draw.line.PolyLine2d;
import org.djutils.draw.point.DirectedPoint2d;
import org.djutils.draw.point.Point2d;
import org.djutils.exceptions.Throw;
import org.djutils.math.AngleUtil;
/**
* Continuous definition of an arc in 2d.
* <p>
* Copyright (c) 2023-2025 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://github.com/peter-knoppers">Peter Knoppers</a>
* @author <a href="https://github.com/wjschakel">Wouter Schakel</a>
*/
public class Arc2d implements Curvature, Curve2d, OffsetCurve2d
{
/** Starting point. */
private final DirectedPoint2d startPoint;
/** Curve radius. */
private final double radius;
/** Angle of the curve. */
private final double angle;
/** Sign to use for offsets and angles, which depends on the left/right direction. */
private final double sign;
/** Center point of circle, as calculated in constructor. */
private final Point2d center;
/**
* Define arc by starting point, radius, curve direction, and angle.
* @param startPoint starting point
* @param radius radius (must be positive)
* @param left <code>true</code>for left turning curve; <code>false</code> for for right turning curve
* @param angle angle of arc (must be positive)
*/
public Arc2d(final DirectedPoint2d startPoint, final double radius, final boolean left, final double angle)
{
Throw.whenNull(startPoint, "startPoint");
Throw.when(radius < 0.0, IllegalArgumentException.class, "radius must be positive");
Throw.when(angle < 0.0, IllegalArgumentException.class, "angle must be positive");
this.startPoint = startPoint;
this.radius = radius;
this.sign = left ? 1.0 : -1.0;
this.angle = angle;
double dx = Math.cos(startPoint.dirZ) * this.sign * radius;
double dy = Math.sin(startPoint.dirZ) * this.sign * radius;
this.center = new Point2d(startPoint.x - dy, startPoint.y + dx);
}
@Override
public double getStartCurvature()
{
return 1.0 / this.radius;
}
@Override
public double getEndCurvature()
{
return getStartCurvature();
}
@Override
public double getStartRadius()
{
return this.radius;
}
@Override
public double getEndRadius()
{
return this.radius;
}
/**
* Does this arc bend to the left?
* @return <code>true</code> if this Arc bends to the left; <code>false</code> if this Arc bends to the right
*/
public boolean isLeft()
{
return this.sign > 0;
}
/**
* Retrieve the total change of direction on this Arc.
* @return the total change of direction on this Arc
*/
public double getAngle()
{
return this.angle;
}
/**
* Compute the point at the provided fraction of this Arc while applying the provided lateral offset.
* @param fraction the fraction along this Arc
* @param offset the lateral offset to apply
* @return the point at the provided fraction of this Arc with the provided lateral offset applied
*/
private Point2d getPoint(final double fraction, final double offset)
{
double len = this.radius - this.sign * offset;
double a = this.startPoint.dirZ + this.sign * this.angle * fraction;
double dx = this.sign * Math.cos(a) * len;
double dy = this.sign * Math.sin(a) * len;
return new Point2d(this.center.x + dy, this.center.y - dx);
}
@Override
public Point2d getPoint(final double fraction)
{
return getPoint(fraction, 0);
}
@Override
public Point2d getPoint(final double fraction, final ContinuousPiecewiseLinearFunction of)
{
return getPoint(fraction, of.get(fraction));
}
@Override
public Double getDirection(final double fraction)
{
return AngleUtil.normalizeAroundZero(this.startPoint.dirZ + this.sign * this.angle * fraction);
}
@Override
public double getDirection(final double fraction, final ContinuousPiecewiseLinearFunction of)
{
/*-
* x = cos(phi) * (r - s(phi))
* y = sin(phi) * (r - s(phi))
*
* with,
* phi = angle of circle arc point at fraction, relative to circle center
* r = radius
* s(phi) = offset at phi (or at fraction)
*
* then using the product rule:
*
* x' = -sin(phi) * (r - s(phi)) - cos(phi) * s'(phi)
* y' = cos(phi) * (r - s(phi)) - sin(phi) * s'(phi)
*/
double phi = (Arc2d.this.startPoint.dirZ + Arc2d.this.sign * (Arc2d.this.angle * fraction - Math.PI / 2));
double sinPhi = Math.sin(phi);
double cosPhi = Math.cos(phi);
double sPhi = Arc2d.this.sign * of.get(fraction);
double sPhiD = of.getDerivative(fraction) / Arc2d.this.angle;
double dx = -sinPhi * (Arc2d.this.radius - sPhi) - cosPhi * sPhiD;
double dy = cosPhi * (Arc2d.this.radius - sPhi) - sinPhi * sPhiD;
double direction = Math.atan2(Arc2d.this.sign * dy, Arc2d.this.sign * dx);
return direction;
}
@Override
public PolyLine2d toPolyLine(final Flattener2d flattener)
{
Throw.whenNull(flattener, "Flattener");
return flattener.flatten(this);
}
@Override
public PolyLine2d toPolyLine(final OffsetFlattener2d flattener, final ContinuousPiecewiseLinearFunction offsets)
{
Throw.whenNull(offsets, "Offsets");
return flattener.flatten(this, offsets);
}
@Override
public double getLength()
{
return this.angle * this.radius;
}
@Override
public String toString()
{
return "Arc [startPoint=" + this.startPoint + ", radius=" + this.radius + ", angle=" + this.angle + ", left="
+ (this.sign > 0.0) + "]";
}
}