Uses of Class
org.djutils.math.complex.Complex
Packages that use Complex
Package
Description
package-info.java.
Compute roots (zeros) of linear, quadratic, cubic and quartic polynomials.
-
Uses of Complex in org.djutils.math.complex
Fields in org.djutils.math.complex declared as ComplexModifier and TypeFieldDescriptionstatic final ComplexComplex.IThe imaginary unit value (i).static final ComplexComplex.MINUS_IThe negative imaginary unit value (i).static final ComplexComplex.MINUS_ONEThe (real) minus one value in the complex number space.static final ComplexComplex.ONEThe (real) one value in the complex number space.static final ComplexComplex.ZEROThe zero value in the complex number space.Methods in org.djutils.math.complex that return ComplexModifier and TypeMethodDescriptionstatic ComplexInverse cosine function of a Complex operand.static ComplexInverse hyperbolic cosine of a Complex operand.static ComplexInverse sine function of a Complex operand.static ComplexInverse hyperbolic sine of a Complex operand.static ComplexInverse tangent function of a Complex operand.static ComplexInverse hyperbolic tangent of a Complex operand.static ComplexPrincipal cube root of a Complex operand.Complex.conjugate()Construct the complex conjugate of this Complex.static ComplexCosine function of Complex operand.static ComplexHyperbolic cosine function of Complex operand.Complex.divideBy(double rightOperand) Divide this Complex by a scalar.Divide this Complex by another Complex.static ComplexExponential function of a Complex operand.static ComplexPrincipal value of the natural logarithm of a Complex operand.Complex.minus(double rightOperand) Subtract a scalar from this Complex.Subtract another Complex from this Complex.Complex.plus(double rightOperand) Add a scalar to this Complex.Add this Complex and another Complex.Complex.reciprocal()Compute the reciprocal of this Complex.Complex.rotate(double angle) Rotate this Complex by an angle.static ComplexSine function of a Complex operand.static ComplexHyperbolic sine function of a Complex operand.static ComplexPrincipal square root of a Complex operand.static ComplexTangent function of a Complex operand.static ComplexHyperbolic tangent function of a Complex operand.Complex.times(double rightOperand) Multiply this Complex with a scalar.Multiply this Complex with another Complex.Methods in org.djutils.math.complex with parameters of type ComplexModifier and TypeMethodDescriptionstatic ComplexInverse cosine function of a Complex operand.static ComplexInverse hyperbolic cosine of a Complex operand.static ComplexInverse sine function of a Complex operand.static ComplexInverse hyperbolic sine of a Complex operand.static ComplexInverse tangent function of a Complex operand.static ComplexInverse hyperbolic tangent of a Complex operand.static ComplexPrincipal cube root of a Complex operand.static ComplexCosine function of Complex operand.static ComplexHyperbolic cosine function of Complex operand.Divide this Complex by another Complex.static ComplexExponential function of a Complex operand.static ComplexPrincipal value of the natural logarithm of a Complex operand.Subtract another Complex from this Complex.Add this Complex and another Complex.static ComplexSine function of a Complex operand.static ComplexHyperbolic sine function of a Complex operand.static ComplexPrincipal square root of a Complex operand.static ComplexTangent function of a Complex operand.static ComplexHyperbolic tangent function of a Complex operand.Multiply this Complex with another Complex. -
Uses of Complex in org.djutils.math.polynomialroots
Methods in org.djutils.math.polynomialroots that return ComplexModifier and TypeMethodDescriptionstatic Complex[]PolynomialRoots.cubicRoots(double c2, double c1, double c0) CUBIC POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots.cubicRoots(double c2, double c1, double c0, boolean verbose) CUBIC POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots.cubicRoots(double c3, double c2, double c1, double c0) CUBIC POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots2.cubicRootsAberthEhrlich(double a3, double a2, double a1, double a0) CUBIC POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots2.cubicRootsCardano(double a, double b, double c, double d) CUBIC POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots2.cubicRootsDurandKerner(double a3, double a2, double a1, double a0) CUBIC POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots2.cubicRootsNewtonFactor(double a3, double a2, double a1, double a0) CUBIC POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots.linearRoots(double q0) LINEAR POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots.linearRoots(double q1, double q0) LINEAR POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots2.linearRoots(double q0) LINEAR POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots2.linearRoots(double q1, double q0) LINEAR POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots.quadraticRoots(double q1, double q0) QUADRATIC POLYNOMIAL ROOT SOLVERstatic Complex[]PolynomialRoots.quadraticRoots(double q2, double q1, double q0) QUADRATIC POLYNOMIAL ROOT SOLVERstatic Complex[]PolynomialRoots2.quadraticRoots(double q1, double q0) QUADRATIC POLYNOMIAL ROOT SOLVERstatic Complex[]PolynomialRoots2.quadraticRoots(double q2, double q1, double q0) QUADRATIC POLYNOMIAL ROOT SOLVERstatic Complex[]PolynomialRoots.quarticRoots(double q3, double q2, double q1, double q0) QUARTIC POLYNOMIAL ROOT SOLVERstatic Complex[]PolynomialRoots.quarticRoots(double q3, double q2, double q1, double q0, boolean verbose) QUARTIC POLYNOMIAL ROOT SOLVERstatic Complex[]PolynomialRoots.quarticRoots(double q4, double q3, double q2, double q1, double q0) QUARTIC POLYNOMIAL ROOT SOLVERstatic Complex[]PolynomialRoots2.quarticRootsAberthEhrlich(double a4, double a3, double a2, double a1, double a0) QUADRATIC POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots2.quarticRootsDurandKerner(double a4, double a3, double a2, double a1, double a0) QUADRATIC POLYNOMIAL ROOT SOLVER.static Complex[]PolynomialRoots2.rootsAberthEhrlich(Complex[] a) Polynomial root finder using the Aberth-Ehrlich method or Aberth method, with complex coefficients for the polynomial equation.static Complex[]PolynomialRoots2.rootsDurandKerner(Complex[] a) Polynomial root finder using the Durand-Kerner method, with complex coefficients for the polynomial equation.Methods in org.djutils.math.polynomialroots with parameters of type ComplexModifier and TypeMethodDescriptionstatic Complex[]PolynomialRoots2.rootsAberthEhrlich(Complex[] a) Polynomial root finder using the Aberth-Ehrlich method or Aberth method, with complex coefficients for the polynomial equation.static Complex[]PolynomialRoots2.rootsDurandKerner(Complex[] a) Polynomial root finder using the Durand-Kerner method, with complex coefficients for the polynomial equation.