main(String[]) |  | 0% |  | 0% | 6 | 6 | 24 | 24 | 1 | 1 |
cubicRootsCardano(double, double, double, double) |  | 0% |  | 0% | 9 | 9 | 25 | 25 | 1 | 1 |
cubicRootsNewtonFactor(double, double, double, double) |  | 0% |  | 0% | 11 | 11 | 30 | 30 | 1 | 1 |
rootBisection(double[], double, double, double) |  | 0% |  | 0% | 5 | 5 | 18 | 18 | 1 | 1 |
rootNewtonRaphson(double[], double) |  | 0% |  | 0% | 5 | 5 | 10 | 10 | 1 | 1 |
fDerivative(double[], double) |  | 0% |  | 0% | 2 | 2 | 6 | 6 | 1 | 1 |
maxAbs(double[]) |  | 0% |  | 0% | 3 | 3 | 5 | 5 | 1 | 1 |
f(double[], double) |  | 0% |  | 0% | 2 | 2 | 6 | 6 | 1 | 1 |
f(double[], Complex) |  | 0% |  | 0% | 2 | 2 | 6 | 6 | 1 | 1 |
quadraticRoots(double, double) |   | 92% |   | 90% | 3 | 17 | 5 | 46 | 0 | 1 |
sign(double, double) |  | 77% |   | 50% | 1 | 2 | 0 | 1 | 0 | 1 |
rootsAberthEhrlich(Complex[]) |  | 100% |  | 100% | 0 | 11 | 0 | 29 | 0 | 1 |
rootsDurandKerner(Complex[]) |  | 100% |  | 100% | 0 | 12 | 0 | 29 | 0 | 1 |
quarticRootsDurandKerner(double, double, double, double, double) |  | 100% |  | 100% | 0 | 2 | 0 | 3 | 0 | 1 |
quarticRootsAberthEhrlich(double, double, double, double, double) |  | 100% |  | 100% | 0 | 2 | 0 | 3 | 0 | 1 |
cubicRootsDurandKerner(double, double, double, double) |  | 100% |  | 100% | 0 | 2 | 0 | 3 | 0 | 1 |
cubicRootsAberthEhrlich(double, double, double, double) |  | 100% |  | 100% | 0 | 2 | 0 | 3 | 0 | 1 |
fDerivative(Complex[], Complex) |  | 100% |  | 100% | 0 | 2 | 0 | 6 | 0 | 1 |
maxAbs(Complex[]) |  | 100% |  | 100% | 0 | 3 | 0 | 5 | 0 | 1 |
f(Complex[], Complex) |  | 100% |  | 100% | 0 | 2 | 0 | 6 | 0 | 1 |
quadraticRoots(double, double, double) |  | 100% |  | 100% | 0 | 2 | 0 | 3 | 0 | 1 |
linearRoots(double, double) |  | 100% |  | 100% | 0 | 2 | 0 | 3 | 0 | 1 |
linearRoots(double) |  | 100% | | n/a | 0 | 1 | 0 | 1 | 0 | 1 |